btgym.research package

btgym.research.strategy_gen_4 module

class btgym.research.strategy_gen_4.DevStrat_4_6(**kwargs)[source]
Objectives:
external state data feature search:
time_embedded three-channeled vector:
  • Open channel is one time-step difference of Open price;
  • High and Low channels are differences between current Open price and current High or Low prices respectively
internal state data feature search:
time_embedded concatenated vector of broker and portfolio statistics time_embedded vector of last actions recieved (one-hot) time_embedded vector of rewards
reward shaping search:
potential-based shaping functions
Data:
synthetic/real
Parameters:**kwargs – see BTgymBaseStrategy args.
class btgym.research.strategy_gen_4.DevStrat_4_7(**kwargs)[source]

4_6 + Sliding statistics avg_period disentangled from time embedding dim; Only one last step sliding stats are used for internal state; Reward weights: 1, 2, 10 , reward scale factor aded;

class btgym.research.strategy_gen_4.DevStrat_4_8(**kwargs)[source]

4_7 + Uses full average_period of inner stats for use with inner_conv_encoder.

class btgym.research.strategy_gen_4.DevStrat_4_9(**kwargs)[source]

4_7 + Uses simple SMA market state features.

class btgym.research.strategy_gen_4.DevStrat_4_10(**kwargs)[source]

4_7 + Reward search: log-normalised potential functions. Nope.

class btgym.research.strategy_gen_4.DevStrat_4_11(**kwargs)[source]

4_10 + Another set of sma-features, grads for broker state

class btgym.research.strategy_gen_4.DevStrat_4_12(**kwargs)[source]

4_11 + sma-features 8, 512;