btgym.research package¶
btgym.research.gps subpackage¶
btgym.research.casual_conv subpackage¶
btgym.research.strategy_gen_4 module¶
- 
class btgym.research.strategy_gen_4.DevStrat_4_6(**kwargs)[source]¶
- Objectives:
- external state data feature search:
- time_embedded three-channeled vector:
- Open channel is one time-step difference of Open price;
- High and Low channels are differences between current Open price and current High or Low prices respectively
 
 
- internal state data feature search:
- time_embedded concatenated vector of broker and portfolio statistics time_embedded vector of last actions recieved (one-hot) time_embedded vector of rewards
- reward shaping search:
- potential-based shaping functions
 
- Data:
- synthetic/real
 - Parameters: - **kwargs – see BTgymBaseStrategy args. 
- 
class btgym.research.strategy_gen_4.DevStrat_4_7(**kwargs)[source]¶
- 4_6 + Sliding statistics avg_period disentangled from time embedding dim; Only one last step sliding stats are used for internal state; Reward weights: 1, 2, 10 , reward scale factor aded; 
- 
class btgym.research.strategy_gen_4.DevStrat_4_8(**kwargs)[source]¶
- 4_7 + Uses full average_period of inner stats for use with inner_conv_encoder. 
- 
class btgym.research.strategy_gen_4.DevStrat_4_9(**kwargs)[source]¶
- 4_7 + Uses simple SMA market state features. 
- 
class btgym.research.strategy_gen_4.DevStrat_4_10(**kwargs)[source]¶
- 4_7 + Reward search: log-normalised potential functions. Nope.