btgym.research package¶
btgym.research.gps subpackage¶
btgym.research.casual_conv subpackage¶
btgym.research.strategy_gen_4 module¶
-
class
btgym.research.strategy_gen_4.
DevStrat_4_6
(**kwargs)[source]¶ - Objectives:
- external state data feature search:
- time_embedded three-channeled vector:
- Open channel is one time-step difference of Open price;
- High and Low channels are differences between current Open price and current High or Low prices respectively
- internal state data feature search:
- time_embedded concatenated vector of broker and portfolio statistics time_embedded vector of last actions recieved (one-hot) time_embedded vector of rewards
- reward shaping search:
- potential-based shaping functions
- Data:
- synthetic/real
Parameters: **kwargs – see BTgymBaseStrategy args.
-
class
btgym.research.strategy_gen_4.
DevStrat_4_7
(**kwargs)[source]¶ 4_6 + Sliding statistics avg_period disentangled from time embedding dim; Only one last step sliding stats are used for internal state; Reward weights: 1, 2, 10 , reward scale factor aded;
-
class
btgym.research.strategy_gen_4.
DevStrat_4_8
(**kwargs)[source]¶ 4_7 + Uses full average_period of inner stats for use with inner_conv_encoder.
-
class
btgym.research.strategy_gen_4.
DevStrat_4_9
(**kwargs)[source]¶ 4_7 + Uses simple SMA market state features.
-
class
btgym.research.strategy_gen_4.
DevStrat_4_10
(**kwargs)[source]¶ 4_7 + Reward search: log-normalised potential functions. Nope.