btgym.research.casual_conv.layers module¶
btgym.research.casual_conv.networks module¶
-
btgym.research.casual_conv.networks.
conv_1d_casual_encoder
(x, ob_space, ac_space, conv_1d_num_filters=32, conv_1d_filter_size=2, conv_1d_activation=<function elu>, conv_1d_overlap=1, name='casual_encoder', keep_prob=None, conv_1d_gated=False, reuse=False, collections=None, **kwargs)[source]¶ Tree-shaped convolution stack encoder as more comp. efficient alternative to dilated one.
Stage1 casual convolutions network: from 1D input to estimated features.
Returns: tensor holding state features;
-
btgym.research.casual_conv.networks.
attention_layer
(inputs, attention_ref=<class 'tensorflow.contrib.seq2seq.python.ops.attention_wrapper.LuongAttention'>, name='attention_layer', **kwargs)[source]¶ Temporal attention layer. Computes attention context based on last(left) value in time dim.
Paper: Minh-Thang Luong, Hieu Pham, Christopher D. Manning., “Effective Approaches to Attention-based Neural Machine Translation.” https://arxiv.org/abs/1508.04025
Parameters: - inputs –
- attention_ref – attention mechanism class
- name –
Returns: attention output tensor
-
btgym.research.casual_conv.networks.
conv_1d_casual_attention_encoder
(x, ob_space, ac_space, conv_1d_num_filters=32, conv_1d_filter_size=2, conv_1d_activation=<function elu>, conv_1d_attention_ref=<class 'tensorflow.contrib.seq2seq.python.ops.attention_wrapper.LuongAttention'>, name='casual_encoder', keep_prob=None, conv_1d_gated=False, conv_1d_full_hidden=False, reuse=False, collections=None, **kwargs)[source]¶ Tree-shaped convolution stack encoder with self-attention.
Stage1 casual convolutions network: from 1D input to estimated features.
Returns: tensor holding state features;
btgym.research.casual_conv.policy module¶
btgym.research.casual_conv.strategy module¶
-
class
btgym.research.casual_conv.strategy.
CasualConvStrategy
(**kwargs)[source]¶ Provides stream of data for casual convolutional encoder
-
class
btgym.research.casual_conv.strategy.
MaxPool
[source]¶ Custom period sliding candle upper bound.
-
class
btgym.research.casual_conv.strategy.
MinPool
[source]¶ Custom period sliding candle lower bound.
-
class
btgym.research.casual_conv.strategy.
CasualConvStrategy_0
(**kwargs)[source]¶ Casual convolutional encoder + sliding candle price data features instead of SMA.